These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessing insulin secretion by modeling in multiple-meal tests: role of potentiation. Author: Mari A, Tura A, Gastaldelli A, Ferrannini E. Journal: Diabetes; 2002 Feb; 51 Suppl 1():S221-6. PubMed ID: 11815483. Abstract: We developed a mathematical model of the glucose control of insulin secretion capable of quantifying beta-cell function from a physiological meal test. The model includes a static control, i.e., a secretion component that is a function of plasma glucose concentration (the dose-response function), and a dynamic control, i.e., a secretion component that is proportional to the positive values of the glucose concentration derivative. Furthermore, the dose-response function is assumed to be modulated by a time-varying potentiation factor. To test the model, nine nondiabetic control subjects and nine type 2 diabetic patients received three standardized mixed meals over a period of 14-15 h. Blood samples were drawn for the measurement of glucose, insulin, and C-peptide concentration. The dose-response function, the parameter of the dynamic control, and the potentiation factor were determined by fitting the model to glucose and C-peptide concentrations. In diabetic patients, the dose-response function was shifted to the right (glucose concentration at a reference insulin secretion of 300 pmol.min(-1).m(-2) was 11.7 +/- 1.1 vs. 7.2 +/- 0.7 mmol/l; P < 0.05), and decreased in slope (53 +/- 15 vs. 148 +/- 38 pmol.min(-1).m(-2).mmol(-1).l; P < 0.05) and the parameter of the dynamic control was decreased (220 +/- 67 vs. 908 +/- 276 pmol.m(-2).mmol(-1).l; P < 0.05) compared with the nondiabetic control subjects. Furthermore, potentiation was markedly blunted and delayed: maximum potentiation was observed at the first meal in normal subjects and at the second meal (about 4 h later) in diabetic subjects; the mean time for the potentiation factor was higher (7.1 +/- 0.2 vs. 5.9 +/- 0.2 h; P < 0.01), and the size of potentiation was reduced (2.6 +/- 0.5 vs. 7.2 +/- 1.5 fold increase; P < 0.005). In conclusion, our model of insulin secretion extracts multiple indexes of beta-cell function from a physiological meal test. Use of the model in patients with type 2 diabetes retrieves known defects in insulin secretion but also uncovers new facets of beta-cell dysfunction.[Abstract] [Full Text] [Related] [New Search]