These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Author: Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F. Journal: Curr Biol; 2002 Jan 22; 12(2):165-70. PubMed ID: 11818070. Abstract: Several types of histone modifications have been shown to control transcription. Recent evidence suggests that specific combinations of these modifications determine particular transcription patterns. The histone modifications most recently shown to play critical roles in transcription are arginine-specific and lysine-specific methylation. Lysine-specific histone methyltransferases all contain a SET domain, a conserved 130 amino acid motif originally identified in polycomb- and trithorax-group proteins from Drosophila. Members of the SU(VAR)3-9 family of SET-domain proteins methylate K9 of histone H3. Methylation of H3 has also been shown to occur at K4. Several studies have suggested a correlation between K4-methylated H3 and active transcription. In this paper, we provide evidence that K4-methylated H3 is required in a negative role, rDNA silencing in Saccharomyces cerevisiae. In a screen for rDNA silencing mutants, we identified a mutation in SET1, previously shown to regulate silencing at telomeres and HML. Recent work has shown that Set1 is a member of a complex and is required for methylation of K4 of H3 at several genomic locations. In addition, we demonstrate that a K4R change in H3, which prevents K4 methylation, impairs rDNA silencing, indicating that Set1 regulates rDNA silencing, directly or indirectly, via H3 methylation. Furthermore, we present several lines of evidence that the role of Set1 in rDNA silencing is distinct from that of the histone deacetylase Sir2. Together, these results suggest that Set1-dependent H3 methylation is required for rDNA silencing in a Sir2-independent fashion.[Abstract] [Full Text] [Related] [New Search]