These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of sustained hyperoxia on revascularization in experimental retinopathy of prematurity.
    Author: Gu X, Samuel S, El-Shabrawey M, Caldwell RB, Bartoli M, Marcus DM, Brooks SE.
    Journal: Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):496-502. PubMed ID: 11818396.
    Abstract:
    PURPOSE: To investigate the effects of prolonged hyperoxia on vascular recovery and glia survival after experimentally induced retinopathy of prematurity (ROP) in the mouse. METHODS: The effects of hyperoxia on revascularization and vitreous neovascularization were compared between mice raised in 75% oxygen from postnatal day (P)7 to P12, followed by room air recovery and mice raised in 75% oxygen from P7 to P27. The status of astrocytes and Müller cells was evaluated by glial fibrillary acidic protein (GFAP) immunohistochemistry on retinal wholemounts and serial sections. A window of susceptibility to oxygen-induced vaso-obliteration was defined by comparing the extent of retinal vaso-obliteration resulting from 2 days of hyperoxia beginning on P7, P9, P11, P13, or P15. RESULTS: Oxygen-induced vaso-obliteration of retinal capillaries was limited to the period between birth and P15. Paradoxically, revascularization was markedly accelerated and neovascularization markedly reduced in mice maintained in prolonged hyperoxia (P7-P27) compared with mice recovering in room air. The extended use of 75% oxygen during the recovery period was associated with preservation of astrocytes and Müller cells in the avascular retina. CONCLUSIONS: The antiangiogenic effect of hyperoxia on retinal capillaries is strongly dependent on postnatal age. A protocol of continuous 75% supplemental oxygen accelerates recovery of inner retinal vasculature and prevents vitreous neovascularization, by a mechanism that may involve preservation of inner retinal glia.
    [Abstract] [Full Text] [Related] [New Search]