These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway. Author: Nam SY, Amoscato AA, Lee YJ. Journal: Oncogene; 2002 Jan 17; 21(3):337-46. PubMed ID: 11821946. Abstract: To examine whether the tumor microenvironment alters cytokine-induced cytotoxicity, human prostate adenocarcinoma DU-145 cells were exposed to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or glucose deprivation, a common characteristic of the tumor microenvironment. TRAIL alone reduced cell survival in a dose-dependent manner. Glucose deprivation alone induced no cytotoxicity within 4 h. However, the combination of TRAIL (50 ng/ml) and glucose deprivation for 4 h increased cell death and PARP cleavage by promoting activation of caspase-8 and caspase-3, relative to that of TRAIL alone. Similar results were observed in human colorectal carcinoma CX-1 cells. Data from immunoblotting analysis reveal that glucose deprivation-enhanced TRAIL cytotoxicity is inversely related to the intracellular level of FLICE inhibitory protein (FLIP) but not that of death receptor 5 (DR5). Results from mass spectrometry show that glucose deprivation elevates ceramide. The elevation of ceramide may cause dephosphorylation of Akt and maintain dephosphorylation of Akt in the presence of TRAIL and then subsequently down-regulate the expression of FLIP. Taken together, the present studies suggest that glucose deprivation enhances TRAIL-induced cytotoxicity through the ceramide-Akt-FLIP pathway.[Abstract] [Full Text] [Related] [New Search]