These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Requirement for a hsp90 chaperone-dependent MEK1/2-ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. Author: Piatelli MJ, Doughty C, Chiles TC. Journal: J Biol Chem; 2002 Apr 05; 277(14):12144-50. PubMed ID: 11823472. Abstract: A requirement for cyclin D2 in G(1)-to-S phase progression has been definitively established in mature B cells stimulated via the B cell antigen receptor (BCR). However, the identity of constituents of the BCR signaling cascade that leads to cyclin D2 accumulation remains incomplete. We report that inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-1/2 blocked BCR-induced activation of extracellular signal-regulated kinase (ERK). Inhibition of the MEK1/2-ERK pathway was sufficient to abrogate BCR-induced cyclin D2 expression at the mRNA and protein levels. Disruption of endogenous heat shock protein 90 (hsp90) function with geldanamycin abrogated BCR-induced cyclin D2 expression and proliferation. Geldanamycin effects were attributed to a selective depletion of cellular Raf-1 that interrupted BCR-coupled activation of MEK1/2 and ERK. By contrast, signaling through the phosphatidylinositol 3-kinase and protein kinase C pathways was not affected, suggesting that disruption of hsp90 function did not cause a general impairment of BCR signaling. These results suggest that the MEK1/2-ERK pathway is essential for BCR signaling to cyclin D2 accumulation in ex vivo splenic B lymphocytes. Furthermore, these findings imply that hsp90 function is required for BCR signaling through the Raf-1-MEK1/2-ERK pathway but not through the phosphatidylinositol 3-kinase- or protein kinase C-dependent pathways.[Abstract] [Full Text] [Related] [New Search]