These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insight into the activation mechanism of Escherichia coli octaprenyl pyrophosphate synthase derived from pre-steady-state kinetic analysis.
    Author: Pan JJ, Kuo TH, Chen YK, Yang LW, Liang PH.
    Journal: Biochim Biophys Acta; 2002 Jan 31; 1594(1):64-73. PubMed ID: 11825609.
    Abstract:
    Octaprenyl pyrophosphate synthase (OPPs) catalyzes the sequential condensation of five molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to generate all-trans C40-octaprenyl pyrophosphate, which constitutes the side chain of ubiquinone. Due to the slow product release, a long-chain polyprenyl pyrophosphate synthase often requires detergent or another factor for optimal activity. Our previous studies in examining the activity enhancement of Escherichia coli undecaprenyl pyrophosphate synthase have demonstrated a switch of the rate-determining step from product release to isopentenyl pyrophosphate (IPP) condensation reaction in the presence of Triton [12]. In order to understand the mechanism of enzyme activation for E. coli OPPs, a single-turnover reaction was performed and the measured IPP condensation rate (2 s(-1)) was 100 times larger than the steady-state rate (0.02 s(-1)). The high molecular weight fractions and Triton could accelerate the steady-state rate by 3-fold (0.06 s(-1)) but insufficient to cause full activation (100-fold). A burst product formation was observed in enzyme multiple turnovers indicating a slow product release.
    [Abstract] [Full Text] [Related] [New Search]