These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human and murine phenotypes associated with defects in cation-chloride cotransport. Author: Delpire E, Mount DB. Journal: Annu Rev Physiol; 2002; 64():803-43. PubMed ID: 11826289. Abstract: The diuretic-sensitive cotransport of cations with chloride is mediated by the cation-chloride cotransporters, a large gene family encompassing a total of seven Na-Cl, Na-K-2Cl, and K-Cl cotransporters, in addition to two related transporters of unknown function. The cation-chloride cotransporters perform a wide variety of physiological roles and differ dramatically in patterns of tissue expression and cellular localization. The renal-specific Na-Cl cotransporter (NCC) and Na-K-2Cl cotransporter (NKCC2) are involved in Gitelman and Bartter syndrome, respectively, autosomal recessive forms of metabolic alkalosis. The associated phenotypes due to loss-of-function mutations in NCC and NKCC2 are consistent, in part, with their functional roles in the distal convoluted tubule and thick ascending limb, respectively. Other cation-chloride cotransporters are positional candidates for Mendelian human disorders, and the K-Cl cotransporter KCC3, in particular, may be involved in degenerative peripheral neuropathies linked to chromosome 15q14. The characterization of mice with both spontaneous and targeted mutations of several cation-chloride cotransporters has also yielded significant insight into the physiological and pathophysiological roles of several members of the gene family. These studies implicate the Na-K-2Cl cotransporter NKCC1 in hearing, salivation, pain perception, spermatogenesis, and the control of extracellular fluid volume. Targeted deletion of the neuronal-specific K-Cl cotransporter KCC2 generates mice with a profound seizure disorder and confirms the central role of this transporter in modulating neuronal excitability. Finally, the comparison of human and murine phenotypes associated with loss-of-function mutations in cation-chloride cotransporters indicates important differences in physiology of the two species and provides an important opportunity for detailed physiological and morphological analysis of the tissues involved.[Abstract] [Full Text] [Related] [New Search]