These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Domains in middle-T antigen that cooperate in polyomavirus-mediated oncogenic transformation. Author: Pérez L, Urich M, Paasinen A, Senften M, Meili R, Ballmer-Hofer K. Journal: Virology; 1995 Apr 01; 208(1):26-37. PubMed ID: 11831708. Abstract: Middle-T antigen is the oncogenic protein of Polyomavirus and associates with several cellular enzymes involved in signal transduction, e.g., Src tyrosine kinases, phosphatidylinositol 3-kinase (PI 3-kinase), protein phosphatase 2A (PP2A), and Shc, an SH2 domain-containing adapter protein. We have shown earlier that middle-T is a target of a cell cycle-regulated serine/threonine-specific kinase, presumably p34cdc2. Phosphorylation of middle-T by p34cdc2 results in increased apparent M, weight of the protein on SDS-polyacrylamide gels. Two threonine residues in positions 160 and 291, respectively, were identified in the middle-T sequence as putative targets of a cyclin-dependent kinase. Replacement of threonine 160 by alanine resulted in a transformation-defective mutant protein that was still capable of forming all the complexes with cellular proteins, suggesting that additional characteristics of middle-T are required for cell transformation. In the present study we report that the defect of the T160A middle-T mutant is compensated by mutations introduced into a domain encompassing amino acids 253 to 302. In particular, mutating serine 283, a canonical phosphorylation site for a cyclin-dependent kinase, to an alanine residue rendered the T160A middle-T mutant wild type. Based on these results we suggest that cell cycle-specific phosphorylation of specific serine and threonine residues by cyclin-dependent kinases regulates middle-T function.[Abstract] [Full Text] [Related] [New Search]