These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A k-space method for coupled first-order acoustic propagation equations. Author: Tabei M, Mast TD, Waag RC. Journal: J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):53-63. PubMed ID: 11831824. Abstract: A k-space method for large-scale simulation of ultrasonic pulse propagation is presented. The present method, which solves the coupled first-order differential equations for wave propagation in inhomogeneous media, is derived in a simple form analogous to previous finite-difference methods with staggered spatial and temporal grids. Like k-space methods based on second-order wave equations, the present method is exact for homogeneous media, unconditionally stable for "slow" [c(r) < or = c0] media, and highly accurate for general weakly scattering media. In addition, unlike previous k-space methods, the form of the method allows straightforward inclusion of relaxation absorption and perfectly matched layer (PML) nonreflecting boundary conditions. Numerical examples illustrate the capabilities of the present k-space method. For weakly inhomogeneous media, accurate results are obtained using coarser temporal and spatial steps than possible with comparable finite-difference and pseudospectral methods. The low dispersion of the k-space method allows accurate representation of frequency-dependent attenuation and phase velocity associated with relaxation absorption. A technique for reduction of Gibbs phenomenon artifacts, in which compressibility and exponentially scaled density functions are smoothed by half-band filtering, is introduced. When employed together with this smoothing technique, the k-space method provides high accuracy for media including discontinuities, high-contrast inhomogeneities, and scattering structures smaller than the spatial grid resolution.[Abstract] [Full Text] [Related] [New Search]