These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ras/MEK but not p38 signaling mediates NT-3-induced neurite extension from spiral ganglion neurons.
    Author: Aletsee C, Beros A, Mullen L, Palacios S, Pak K, Dazert S, Ryan AF.
    Journal: J Assoc Res Otolaryngol; 2001 Dec; 2(4):377-87. PubMed ID: 11833610.
    Abstract:
    Neurotrophin (NT)-3 is expressed in the neuronal target tissue of the developing rat cochlea and has been shown to promote the survival and neurite outgrowth of spiral ganglion (SG) neurons, suggesting a role for this protein during the innervation of the organ of Corti. In other neurons, NT-3 can mediate neuritogenesis and survival via a number of intracellular signal pathways. To date, the intracellular transduction pathways involved in the mediation of NT-3 effects have not been investigated in SG neurons. To determine whether the activities of NT-3 on SG neurons are dependent on the activation of mitogen-activated protein kinase kinases (MEK)/extracellular-signal-regulated kinases (ERK), Ras, and/or p38, SG explants from postnatal-day 4 rats were cultured with NT-3 and increasing concentrations of the MEK inhibitor U0126, the Ras farnesyl-transferase inhibitor (FTI)-277, and the p38 inhibitor SB203580. After fixation and immunocytochemical labeling, neurite growth was evaluated. A dose-dependent decrease of the effects of NT-3 on length and number of processes was observed in the U0126- and FTI-277-treated SG neurons. In contrast, SB203580 had no significant effect on NT-3-mediated stimulation of neurite growth, in terms of either number or length. The results suggest that NT-3 effects on SG neurons are mediated primarily by the Ras/MEK/ERK signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]