These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Compartmentation of the rabbit cerebellar cortex. Author: Sanchez M, Sillitoe RV, Attwell PJ, Ivarsson M, Rahman S, Yeo CH, Hawkes R. Journal: J Comp Neurol; 2002 Mar 05; 444(2):159-73. PubMed ID: 11835188. Abstract: The cytoarchitecture of the adult rabbit cerebellum is revealed by using zebrin II/aldolase c immunocytochemistry in both wholemount and sectioned material. Zebrin II is expressed by approximately half of the Purkinje cells of the cerebellar cortex. In most regions these form a symmetrical array of zebrin II positive and negative parasagittal bands. Four transverse expression domains are identified in the vermis: (1) an anterior zone, comprising four narrow bands, one at the midline and three laterally to either side, extending throughout the anterior lobe to the primary fissure; (2) a central zone with broad immunoreactive bands separated by narrow zebrin II negative bands that disappear caudally to leave no apparent compartmentation; (3) a posterior zone with prominent alternating zebrin II positive and negative bands; and (4) a nodular zone in which all Purkinje cells express zebrin II. In the hemispheres a striped topography is found in lobules HVI, HVII, and crus I, and all Purkinje cells are zebrin II+ in the flocculus and paraflocculus. Because of its importance for the classical conditioning of the eyeblink response, we made a detailed analysis of lobule HVI of the hemisphere. The immunocytochemical data show a complex substructure within HVI with three prominent zebrin II positive bands (probably homologous with P4a+, P4b+, and P5+ of rodents) separated by two zebrin II negative regions (P4- and P4b-). Thus, the organization of the rabbit cerebellum is consistent with the patterns described previously for rat, mouse, and opossum and suggests that there may be a common ground plan for the mammalian cerebellum.[Abstract] [Full Text] [Related] [New Search]