These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: disparate utilization of sodium halides in the production of alpha-halo fatty aldehydes.
    Author: Albert CJ, Crowley JR, Hsu FF, Thukkani AK, Ford DA.
    Journal: J Biol Chem; 2002 Feb 15; 277(7):4694-703. PubMed ID: 11836259.
    Abstract:
    Plasmalogens are a phospholipid molecular subclass that are enriched in the plasma membrane of many mammalian cells. The present study demonstrates that reactive brominating species produced by myeloperoxidase, as well as activated neutrophils, attack the vinyl ether bond of plasmalogens. Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens, resulting in the production of a neutral lipid and lysophosphatidylcholine. Gas chromatography-mass spectrometry and proton NMR analyses of this neutral lipid demonstrated that it was 2-bromohexadecanal (2-BrHDA). In comparison to myeloperoxidase-generated reactive chlorinating species, reactive brominating species attacked the plasmalogen vinyl ether bond at neutral pH. In the presence of a 20-fold molar excess of NaCl compared with NaBr, myeloperoxidase-derived reactive halogenating species favored the production of 2-BrHDA over that of 2-chlorohexadecanal. Additionally, 2-BrHDA was preferentially produced from plasmalogen treated with hypochlorous acid in the presence of NaBr. The potential physiological significance of this pathway was suggested by the demonstration that both 2-BrHDA and 2-bromooctadecanal were produced by PMA-stimulated neutrophils. Taken together, the present studies demonstrate the targeting of the vinyl ether bond of plasmalogens by the reactive brominating species produced by myeloperoxidase and by activated neutrophils, resulting in the production of novel brominated fatty aldehydes.
    [Abstract] [Full Text] [Related] [New Search]