These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
    Author: Akagi K, Kyun Park E, Mood K, Daar IO.
    Journal: Dev Dyn; 2002 Mar; 223(2):216-28. PubMed ID: 11836786.
    Abstract:
    The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from several growth factor receptors to the mitogen-activated protein (MAP) kinase signaling cascade, but its biological function during development is not well characterized. Here, we show that the Xenopus homolog of mammalian SNT1/FRS-2 (XSNT1) plays a critical role in the appropriate formation of mesoderm-derived tissue during embryogenesis. XSNT1 has an expression pattern that is quite similar to the fibroblast growth factor receptor-1 (FGFR1) during Xenopus development. Ectopic expression of XSNT1 markedly enhanced the embryonic defects induced by an activated FGF receptor, and increased the MAP kinase activity as well as the expression of a mesodermal marker in response to FGF receptor signaling. A loss-of-function study using antisense XSNT1 morpholino oligonucleotides (XSNT-AS) shows severe malformation of trunk and posterior structures. Moreover, XSNT-AS disrupts muscle and notochord formation, and inhibits FGFR-induced MAP kinase activation. In ectodermal explants, XSNT-AS blocks FGFR-mediated induction of mesoderm and the accompanying elongation movements. Our results indicate that XSNT1 is a critical mediator of FGF signaling and is required for early Xenopus development.
    [Abstract] [Full Text] [Related] [New Search]