These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on the conformation and interactions of elastin: nuclear magnetic resonance of the polyhexapeptide.
    Author: Urry DW, Onishi T, Long MM, Mitchell LW.
    Journal: Int J Pept Protein Res; 1975; 7(5):367-78. PubMed ID: 1184287.
    Abstract:
    Synthesis, proton magnetic resonance and carbon-13 magnetic resonance characterizations, including complete assignments, are reported for the polyhexapeptide of elastin, HCO-Val(Ala1-Pro2-Gly3-Val4-Gly5-Val6)18-OMe. Temperature dependence of peptide NH chemical shifts and solvent dependence of peptide C-O chemical shifts have been determined in several solvents and have been interpreted in terms of four hydrogen bonded rings for each repeat of the polyhexapeptide. The more stable hydrogen bonded ring is a beta-turn involving Ala1C-O--HN-Val4. More dynamic hydrogen bonds are an 11-atom hydrogen bonded ring Gly3NH--O-C Gly5, a 7-atom hydrogen bonded ring (a gamma-turn) Gly3 C-O--NH-Gly5, and a 23-atom hydrogen bonded ring Val6inH--O-C Val6(i+1). This set of hydrogen bonds results in a right-handed beta-spiral structure with slightly more than two repeats (approximately 2.2) per turn of spiral. The beta-spiral structure is briefly discussed relative to data on the elastic fiber.
    [Abstract] [Full Text] [Related] [New Search]