These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genotoxic mechanism for the major acrolein-derived deoxyguanosine adduct in human cells.
    Author: Yang IY, Johnson F, Grollman AP, Moriya M.
    Journal: Chem Res Toxicol; 2002 Feb; 15(2):160-4. PubMed ID: 11849041.
    Abstract:
    Acrolein, widely distributed in the environment and also produced endogenously, forms deoxyguanosine adducts in DNA. The genotoxicity of the major acrolein-dG adduct, 8alpha and 8beta isomers of 3H-8-hydroxy-3-(beta-D-2'-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (gamma-OH-PdG), and the model adduct, PdG, which lacks the hydroxy group of gamma-OH-PdG, was investigated in human cells. The adducts were site-specifically incorporated into a SV40/BK origin-based shuttle vector. Estimated efficiencies of translesion DNA synthesis were 73% for gamma-OH-PdG and 25% for PdG when compared with dG control. Gamma-OH-PdG was marginally miscoding (<or=1%), inducing G-->T and G-->A base substitutions in HeLa and xeroderma pigmentosum complementation group A (XP-A) and variant (XP-V) cells. There was no significant difference in the miscoding frequency when the adduct was inserted in the leading or lagging strand. PdG was more miscoding than gamma-OH-PdG by inducing targeted base substitutions (G-->T, A, or C) at a frequency of 7.5% in XP-A cells. Thus, the authentic major adduct, gamma-OH-PdG, is less blocking to DNA synthesis and less miscoding than the model adduct, PdG.
    [Abstract] [Full Text] [Related] [New Search]