These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter. Author: Kukushkin AN, Abramova MV, Svetlikova SB, Darieva ZA, Pospelova TV, Pospelov VA. Journal: Oncogene; 2002 Jan 24; 21(5):719-30. PubMed ID: 11850800. Abstract: REF cells transformed by oncogenes E1A and cHa-ras reveal high and constitutive DNA-binding activity of AP-1 factor lacking in c-Fos protein. Consistently, the transcription of c-fos gene has been found to be downregulated. To elucidate the mechanisms of c-fos downregulation in E1A+cHa-ras transformants, we studied the levels of activity of ERK, JNK/SAPK and p38 kinases and phosphorylation state of Elk-1 transcription factor involved in regulation of c-fos gene. Using two approaches, Western blot analysis with phospho-specific antibodies to MAP kinases and in vitro kinase assay with specific substrates, we show here that ectopic expression of E1A and ras oncogenes leads to a sustained activation of ERK and p38 kinases, whereas JNK/SAPK kinase activity is similar to that in non-transformed REF52 cells. Due to sustained activity of the MAP kinase cascades, Elk-1 transcription factor is being phosphorylated even in serum-starved E1A+cHa-ras cells; moreover, serum does not additionally increase phosphorylation of Elk-1, which is predominant TCF protein bound to SRE region of c-fos gene promoter in these cells. Although the amount of ternary complexes SRE/SRF/TCF estimated by EMSA was similar both in serum-starved and serum-stimulated transformed cells, serum addition still caused a modest activation of c-fos gene transcription at the level of 20% to normal REF cells. In attempt to determine how serum caused the stimulatory effect, we found that PD98059, an inhibitor of MEK/ERK kinase cascade, completely suppressed serum-induced c-fos transcription both in REF and E1A+cHa-ras cells, implicating the ERK as primary kinase for c-fos transcription in these cells. In contrast, SB203580, an inhibitor of p38 kinase, augmented noticeably serum-stimulated transcription of c-fos gene in REF cells, implying the involvement of p38 kinase in negative regulation of c-fos. Furthermore, sodium butyrate, an inhibitor of histone deacetylase activity, was capable of activating c-fos transcription both in serum-stimulated and even in serum-starved E1A+cHa-ras cells. Conversely, serum-starved REF cells fail to respond to sodium butyrate treatment by c-fos activation confirming necessity of prior Elk-1 phosphorylation. Taken together, these data suggest that downregulation of c-fos in E1A+cHa-ras cells seems to occur due to a maintenance of a refractory state that arises in normal REF cells after serum-stimulation. The refractory state of c-fos in E1A+cHa-ras cells is likely a consequence of Ras-induced sustained activation of MAPK (ERK) cascade and persistent phosphorylation of TCF (Elk-1) bound to SRE. Combination of these events eventually does contribute to formation of an inactive chromatin structure at c-fos promoter mediated through recruitment of histone deacetylase activity.[Abstract] [Full Text] [Related] [New Search]