These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stopped-flow kinetic study of the peroxidase reactions of mangano-microperoxidase-8. Author: Yeh HC, Yu CH, Wang JS, Chen ST, Su O, Lin WY. Journal: J Biol Inorg Chem; 2002 Jan; 7(1-2):113-9. PubMed ID: 11862547. Abstract: We have investigated the kinetics for the peroxidase-type reaction of mangano microperoxidase 8 (Mn(III)-MP8) by the time-resolved and single-wavelength stopped-flow technique. The formation of intermediate and its subsequent reaction with substrates were studied separately. Oxidation of Mn(III)-MP8 by H2O2 at pH 10.7 yields an intermediate (1) with a rate constant of 2.9 x10(4) M-1 s-1. The formation of 1 exhibits no deuterium solvent isotope effect, favoring the homolytic cleavage of the Mn(III)-MP8 bound hydroperoxide. The rate for the formation of 1 increases sharply as the pH increases and no other intermediate was detected in the entire pH range. Addition of substrate to 1 leads to the regeneration of Mn(III)-MP8. Monitoring the conversion of 1 to Mn(III)-MP8 allows the determination of the substrate reactivity. The substrate reactivity varies by more than two orders of magnitude ranging from 1.04 x 10(6) M-1 s-1 for ascorbic acid to 4.61 x 10(3) M-1s-1 for aniline. It is linearly correlated with the reduction potential for most of the substrates studied, with the easier oxidized species showing greater reactivity. The substrate reactivity drops rapidly as the pH increases. The substrate reactivity at pH 10.7 for the Mn(III)-MP8 system is smaller than that of the corresponding Fe(III)-MP8 system by 2- to 25-fold, depending on the substrate used.[Abstract] [Full Text] [Related] [New Search]