These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation and characterization of carbon monoxide adducts of iron "twin coronet" porphyrins. Extremely low CO affinity and a strong negative polar effect on bound CO.
    Author: Matsu-Ura M, Tani F, Naruta Y.
    Journal: J Am Chem Soc; 2002 Mar 06; 124(9):1941-50. PubMed ID: 11866607.
    Abstract:
    The carbon monoxide (CO) adducts of iron "twin coronet" porphyrins (TCPs) are characterized by UV-vis, resonance Raman (RR), IR, and 13C NMR spectroscopies. A superstructured porphyrin, designated as TCP, was used as a common framework for the four different types of iron complexes. TCP bears two binaphthalene bridges on each side and creates two hydrophobic pockets surrounded by the bulky aromatic rings. In the CO-binding cavities, the hydroxyl groups are oriented toward the center above the heme. The iron complexes investigated are as follows: TCP (which is without a covalently linked axial ligand), TCP-PY (which has a linked pyridine ligand), and TCP-TB and TCP-TG (both of which have a linked thiolate ligand). These complexes were synthesized as ferric forms and identified by the various spectroscopic methods. The UV-vis spectra of TCP-CO and TCP-PY-CO exhibit lambda(max) at 432, 546 and 428, 541 nm, respectively. On the other hand, the CO adducts of TCP-TB and TCP-TG show typical hyperporphyrin spectra for a thiolate-ligated iron(II) porphyrin-CO complex. In the RR spectra, the nu(Fe-CO) bands were observed at 506, 489 cm(-1) (TCP), 465 cm(-1) (TCP-PY), 458, 437 cm(-1) (TCP-TG) and 429 cm(-1) (TCP-TB). Compared with the reported nu(Fe-CO) frequencies of hemoproteins and their model systems, these observed values are unusually low. Further, abnormally high nu(C-O) bands are observed at 1990 cm(-1) (TCP-CO) and 2008 cm(-1) (TCP-PY-CO) in IR spectra. The lower nu(Fe-CO) and the higher nu(C-O) frequencies can be ascribed to the strong negative polar effect caused by the vicinal hydroxyl groups in the cavity. This prediction is further supported by the observation of significant 13C shieldings exhibited by TCP-CO (delta = 202.6 ppm) and TCP-PY-CO (delta = 202.3 ppm), in comparison to hemoproteins and other heme models. The CO affinity of TCP-PY (P1/2CO = 0.017 Torr at 25 C) is unusually lower than other heme models. The unique behavior of these CO adducts is discussed in context of the TCP structures.
    [Abstract] [Full Text] [Related] [New Search]