These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mammalian cell transformation and cell-mediated mutagenesis by carcinogenic polycyclic hydrocarbons.
    Author: Huberman E.
    Journal: Mutat Res; 1975 Aug; 29(2):285-91. PubMed ID: 1186764.
    Abstract:
    The introduction of a polycyclic hydrocarbon such as benzo(alpha)pyrene (BP) into normal golden hamster embryo cell cultures results, in addition to cytotoxicity, in malignant cell transformation. Studies on the effect of different doses of BP on the normal cells showed that the frequency of transformed colonies was directly related to the dose of the carcinogen. Analysis of this dose-response curve suggests a one-event ("one-hit") response for transformation by this carcinogen. The one-event response for transformation by carcinogenic polycyclic hydrocarbons and the fact that these carcinogens bind to DNA in susceptible cells suggests that transformation can involve a single alteration in the genetic constitution of the treated cells. Carcinogens may, therefore, produce somatic mutations, some of which may involve the genes that control malignancy. Recently, considerable progress has been made in developing models for the study of chemical mutagenesis in mammalian cells. Using resistance to 8-azaguanine as a marker, positive correlations between mutagenicity and transformation were obtained with chemically reactive carcinogens such as N-acetoxy-N-2-fluorenyl-acetamide, N-methyl-N'-nitro-N-nitrosoguanidine and K-region epoxides of polycyclic hydrocarbons. However, no such correlations were obtained with the carcinogenic polycyclic hydrocarbons themselves, since the cell lines used in chemical mutagenesis do not metabolize these carcinogens. In order to obtain better correlations, we have developed a cell-mediated mutagenic assay with carcinogenic hydrocarbons in which Chinese hamster cells, which are susceptible for mutagenesis, were co-cultivated with lethally irradiated rodent cells that can metabolize these compounds. Using this cell mediated assay, we obtained mutagenesis with the carcinogenic hydrocarbons 7,12-dimethylbenz(alpha)anthracene (DMBA), BP, 3-methylcholanthrene and 7-methylbenz(alpha)anthracene; the most potent carcinogen, DMBA, gave the highest frequency of mutations. The polycyclic hydrocarbons, pyrene and benz(alpha)anthracene, which are not carcinogenic were also not mutagenic. We have therefore demonstrated a relationship between the carcinogenecity of polycyclic hydrocarbons and their mutagenicity in mammalian cells, without having to isolate their reative metabolic intermediates. It should be possible to use in this system human cells from different organs and individuals to screen for environmental chemicals hazardous to humans which have to be metabolically activated.
    [Abstract] [Full Text] [Related] [New Search]