These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective and AMPA receptor-dependent astrocyte death following prolonged blockade of glutamate reuptake in rat cerebellar cultures.
    Author: Kovács AD, Cebers G, Cebere A, Liljequist S.
    Journal: Exp Neurol; 2002 Mar; 174(1):58-71. PubMed ID: 11869034.
    Abstract:
    In this study we examined the effects of prolonged l-trans-pyrrolidine-2,4-dicarboxylate (PDC)-induced glutamate reuptake blockade on the viability of glial cells in cerebellar granule cell cultures. Immunofluorescence staining for the glial-specific intermediate filament protein, GFAP, revealed that the PDC- induced increase of extracellular glutamate concentration was accompanied by increased astrocyte death, while neurons and oligodendrocytes remained intact and viable. Astrocytic cell death was manifested as fragmentation of processes and cell bodies. The selective astrocyte death was completely prevented by the competitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor antagonist, NBQX (10 microM), whereas MK-801 (10 microM), a noncompetitive blocker of N-methyl-D-aspartate receptors, gave only partial protection. Double staining for GFAP and the AMPA receptor subunits GluR2/3 showed that astrocytes had much higher immunoreactivity for GluR2/3 than neurons or oligodendrocytes, suggesting that the number of AMPA receptors is likely to be higher on astrocytes. Furthermore, we employed real-time RT-PCR to measure GluR1-4 subunit mRNA expression in control and PDC-exposed cultures. Following treatment with PDC, GluR1 and GluR4 mRNAs were reduced by 40% and GluR3 was reduced by 70% relative to control levels. In contrast, GluR2 expression was not affected by the PDC treatment, indicating that GluR3 was the dominant type of AMPA receptor subunit expressed on astrocytes. Our results show that astrocytes appear to be more vulnerable than neurons or oligodendrocytes to a gradual increase in the extracellular glutamate concentration, suggesting that astrocytes may be critically involved in the pathophysiology of slowly developing chronic neurodegenerative disorders.
    [Abstract] [Full Text] [Related] [New Search]