These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucocorticoid-stimulated lung epithelial Na(+) transport is associated with regulated ENaC and sgk1 expression.
    Author: Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP.
    Journal: Am J Physiol Lung Cell Mol Physiol; 2002 Apr; 282(4):L631-41. PubMed ID: 11880287.
    Abstract:
    H441 cells, a bronchiolar epithelial cell line, develop a glucocorticoid-regulated amiloride-sensitive Na(+) transport pathway on permeable supports (R. Sayegh, S. D. Auerbach, X. Li, R. Loftus, R. Husted, J. B. Stokes, and C. P. Thomas. J Biol Chem 274: 12431-12437, 1999). To understand its molecular basis, we examined the effect of glucocorticoids (GC) on epithelial Na(+) channel (ENaC)-alpha, -beta, and -gamma and sgk1 expression and determined the biophysical properties of Na(+) channels in these cells. GC stimulated the expression of ENac-alpha, -beta, and -gamma and sgk1 mRNA, with the first effect seen by 1 h. These effects were abolished by actinomycin D, but not by cycloheximide, indicating a direct stimulatory effect on ENaC and sgk1 mRNA synthesis. The GC effect on transcription of ENaC-alpha mRNA was accompanied by a significant increase in ENaC-alpha protein levels. GC also stimulated ENaC-alpha, -beta, and -gamma and sgk1 mRNA expression in A549 cells, an alveolar type II cell line. To determine the biophysical properties of the Na(+) channel, single-channel currents were recorded from cell-attached H441 membranes. An Na(+)-selective channel with slow kinetics and a slope conductance of 10.8 pS was noted, properties similar to ENaC-alpha, -beta, and -gamma expressed in Xenopus laevis oocytes. These experiments indicate that amiloride-sensitive Na(+) transport is mediated through classic ENaC channels in human lung epithelia and that GC-regulated Na(+) transport is accompanied by increased transcription of each of the component subunits and sgk1.
    [Abstract] [Full Text] [Related] [New Search]