These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Uncoupled ATP hydrolysis and thermogenic activity of the sarcoplasmic reticulum Ca2+-ATPase: coupling effects of dimethyl sulfoxide and low temperature. Author: Barata H, de Meis L. Journal: J Biol Chem; 2002 May 10; 277(19):16868-72. PubMed ID: 11880374. Abstract: The sarcoplasmic reticulum Ca(2+)-ATPase transports Ca(2+) using the energy derived from ATP hydrolysis. During catalysis, part of the energy is used to translocate Ca(2+) across the membrane, and part is dissipated as heat. At 35 degrees C the heat released during the hydrolysis of each ATP molecule varies depending on the formation of a Ca(2+) gradient across the membrane. With leaky vesicles (no gradient) the heat released varies between 9 and 12 kcal/mol of ATP cleaved, and with intact vesicles (gradient), the heat released increases to 20-24 kcal/mol of ATP. After Ca(2+) accumulation, 82% of the Ca(2+)-ATPase activity is not coupled to Ca(2+) transport, and the ratio between Ca(2+) transported and ATP cleaved is 0.3. The addition of 20% dimethyl sulfoxide (v/v) to the medium or decreasing the temperature from 35 to 20 degrees C abolishes the difference of heat produced during ATP hydrolysis in the presence and absence of a gradient. This is accompanied by a simultaneous inhibition of the uncoupled ATPase activity and an increase of the Ca(2+)/ATP ratio from 0.3 to 1.3-1.4. It is concluded that the uncoupled Ca(2+)-ATPase is responsible for both the low Ca(2+)/ATP ratio measured during transport and the difference of heat produced during ATP hydrolysis in the presence and absence of a gradient.[Abstract] [Full Text] [Related] [New Search]