These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP stimulates peripheral axons in human, rat and mouse--differential involvement of A(2B) adenosine and P2X purinergic receptors. Author: Irnich D, Tracey DJ, Polten J, Burgstahler R, Grafe P. Journal: Neuroscience; 2002; 110(1):123-9. PubMed ID: 11882377. Abstract: Receptors for ATP have been reported on peripheral nerve terminals. It is a widespread assumption that the axonal membrane does not possess this kind of chemosensitivity, although P2X purinoceptors have been found in isolated rat vagus nerve. Therefore, in the present study, effects of ATP and analogues were tested on the excitability of unmyelinated axons in isolated rat sural nerve, mouse dorsal roots, and human sural nerve. Bath application of ATP to all three types of axonal preparations increased axonal excitability, but the underlying receptors appear to differ in the various preparations. In rat sural nerve, alpha,beta-adenosine-5'-methylene triphosphate produced the strongest excitation. This effect was blocked by pyridoxal-phosphate-6-azophenyl-2',5'-disulphonic acid and indicates the presence of P2X receptors. In mouse dorsal roots, differences were found between fast and slow C-fibres. The latter responded to both P2X receptor and adenosine receptor agonists. In contrast, effects of ATP on faster-conducting C-fibres seem to be caused exclusively by effects of ATP on adenosine receptors. Application of ATP also excited C-fibres in fascicles of isolated human nerve. The pharmacological profile indicates activation of A(2B) adenosine receptors. However, we could not detect P2X receptors in this preparation with our techniques. These data show that the ATP sensitivity of sensory neurones is not restricted to their terminals. Activation of axonal purinergic receptors may contribute to the transduction of sensory, including nociceptive, stimuli.[Abstract] [Full Text] [Related] [New Search]