These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Moxifloxacin sensitivity of respiratory pathogens in the United Kingdom. Author: Dorai-John T, Thomson CJ, Amyes SG. Journal: J Chemother; 2002 Feb; 14(1):19-24. PubMed ID: 11892894. Abstract: The in vitro activity of moxifloxacin and comparator agents against respiratory isolates from a range of geographically distinct centres around the United Kingdom was investigated in the following study. Clinical isolates of Streptococcus pneumoniae (n = 257), Haemophilus influenzae (n = 399) and Moraxella catarrhalis (n = 253) were obtained between March 1998 and April 1999 from nine centres in the United Kingdom. Sensitivity was determined by testing each isolate for its minimum inhibitory concentration (MIC) by agar dilution. Against Streptococcus pneumoniae moxifloxacin and grepafloxacin were the most active (MIC90 = 0.25 mg/l). Trovafloxacin and sparfloxacin were the next most active (MIC90 = 0.5 mg/l) followed by levofloxacin and ciprofloxacin. MIC90 values of the six fluoroquinolones versus H. influenzae ranged from <0.0039 mg/l to 0.0625 mg/l and from <0.0039 mg/l to 0.5 mg/l for M. catarrhalis. The rank order of activity of the fluoroquinolones versus H. influenzae was moxifloxacin = trovafloxacin = grepafloxacin = sparfloxacin > ciprofloxacin > levofloxacin. Against M. catarrhalis the lowest MIC90 was that of grepafloxacin at 0.0625 mg/l followed by moxifloxacin, sparfloxacin, levofloxacin and ciprofloxacin. Trovafloxacin demonstrated the highest MIC90 at 0.5 mg/l. These results demonstrate that moxifloxacin has superior in vitro activity against respiratory tract pathogens than any other comparator quinolones available for clinical use.[Abstract] [Full Text] [Related] [New Search]