These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preconditioning prevents alterations in cardiac SR gene expression due to ischemia-reperfusion. Author: Temsah RM, Kawabata K, Chapman D, Dhalla NS. Journal: Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1461-6. PubMed ID: 11893583. Abstract: We have previously shown that ischemic preconditioning (IP) improves cardiac performance and sarcoplasmic reticulum (SR) function in hearts subjected to ischemia-reperfusion (I/R). In this study, we examined the effect of IP on I/R-induced changes in gene expression for SR proteins such as the Ca(2+) release channel, Ca(2+) pump ATPase, phospholamban, and calsequestrin in the isolated rat heart. Normal isolated rat hearts exposed to three brief cycles of IP (5-min ischemia and 5-min reperfusion) exhibited a significant decrease in the transcript levels of SR genes. Nonpreconditioned I/R hearts when subjected to 30-min ischemia and 30-min reperfusion showed a marked decrease in mRNA levels for the SR proteins compared with normal hearts; this decrease was attenuated by preconditioning. Although hearts subjected to Ca(2+) paradox (CP) have been shown to exhibit intracellular Ca(2+) overload and SR dysfunction like those in I/R hearts, virtually nothing is known regarding the effect of CP on cardiac SR gene expression. Accordingly, CP (5-min Ca(2+)-free perfusion and 30-min reperfusion with normal medium) was observed to produce dramatic changes in SR gene expression, and the heart failed to contract; these alterations were attenuated by IP. Our results show that 1) both I/R and CP depress SR gene expression in the normal heart, 2) IP attenuates I/R- and CP-induced depression in cardiac function and SR gene expression, and 3) intracellular Ca(2+) overload may play a role in depressing SR gene expression in both I/R and CP hearts.[Abstract] [Full Text] [Related] [New Search]