These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation in vitro of hybrid dimers of H463F and Y74F mutant Escherichia coli tryptophan indole-lyase rescues activity with L-tryptophan. Author: Phillips RS, Johnson N, Kamath AV. Journal: Biochemistry; 2002 Mar 26; 41(12):4012-9. PubMed ID: 11900544. Abstract: Y74F and H463F mutant forms of Escherichia coli tryptophan indole-lyase (Trpase) have been prepared. These mutant proteins have very low activity with L-Trp as substrate (kcat and kcat/Km values less than 0.1% of wild-type Trpase). In contrast, these mutant enzymes exhibit much higher activity with S-(o-nitrophenyl)-L-cysteine and S-ethyl-L-cysteine (kcat/Km values about 1-50% of wild-type Trpase). Thus, Tyr-74 and His-463 are important for the substrate specificity of Trpase for L-Trp. H463F Trpase is not inhibited by a potent inhibitor of wild-type Trpase, oxindolyl-L-alanine, and does not exhibit the pK(a) of 6.0 seen in previous pH dependence studies [Kiick, D. M., and Phillips, R. S. (1988) Biochemistry 27, 7333]. These results suggest that His-463 may be the catalytic base with a pK(a) of 6.0 and Tyr-74 may be a general acid catalyst for the elimination step, as we found previously with tyrosine phenol-lyase [Chen, H., Demidkina, T. V., and Phillips, R. S. (1995) Biochemistry 34, 12776]. H463F Trpase reacts with L-Trp and S-ethyl-L-cysteine in rapid-scanning stopped-flow experiments to form equilibrating mixtures of external aldimine and quinonoid intermediates, similar to those observed with wild-type Trpase. In contrast to the results with wild-type Trpase, the addition of benzimidazole to reactions of H463F Trpase with L-Trp does not result in the formation of an aminoacrylate intermediate. However, addition of benzimidazole with S-ethyl-L-cysteine results in the formation of an aminoacrylate intermediate, with lambda(max) at 345 nm, as was seen previously with wild-type Trpase [Phillips, R. S. (1991) Biochemistry 30, 5927]. This suggests that His-463 plays a specific role in the elimination step of the reaction of L-Trp. Refolding of equimolar mixtures of H463F and Y74F Trpase after unfolding in 4 M guanidine hydrochloride results in a dramatic increase in activity with L-Trp, indicating the formation of a hybrid H463F/Y74F dimer with one normal active site.[Abstract] [Full Text] [Related] [New Search]