These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of human alpha1E subunit-mediated ca2+ channels by the antipsychotic agent chlorpromazine. Author: McNaughton NC, Green PJ, Randall AD. Journal: Acta Physiol Scand; 2001 Dec; 173(4):401-8. PubMed ID: 11903132. Abstract: Chlorpromazine is a neuroleptic antipsychotic agent with a long history of clinical use. Its primary mode of action is thought to be through modulation of monoaminergic inter-neuronal communication; however, its side-effect profile indicates substantial activities in other systems. Recent work has begun to uncover actions of this compound on ion channels. In this light we have investigated the actions of chlorpromazine on the recombinant alpha1E subunit-encoded voltage-sensitive Ca2+ channel (VSCC) that is believed to encode drug-resistant R-type currents found in neurones and other cells. Chlorpromazine produced a dose-dependent antagonism of these channels that was reversed on drug removal. The mean IC50 was close to 10 microM. At this concentration, the level of antagonism observed was dependent on the membrane potential, with greater inhibition being observed at more negative test potentials. Furthermore, chlorpromazine induced substantial changes in the steady-state inactivation properties of alpha1Ebeta3-mediated currents, although it was not seen to elicit a corresponding change in inactivation kinetics. These results are discussed with regard to the possible clinical mechanisms of chlorpromazine actions.[Abstract] [Full Text] [Related] [New Search]