These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transalveolar transport of large polar solutes (sucrose, inulin, and dextran).
    Author: Theodore J, Robin ED, Gaudio R, Acevedo J.
    Journal: Am J Physiol; 1975 Oct; 229(4):989-96. PubMed ID: 1190344.
    Abstract:
    The in vivo transalveolar transport of three large polar solutes, sucrose, inulin, and dextran (mol wt 60,000-90,00), was compared with the transport of urea in saline-filled dog lung. Apparent permeability coefficents (p', in cm X sec-1 X 10(6)) were as follows; urea: 2.4 +/- 0.28 (SD) greater than sucrose: 0.64 +/- 0.31 (P less than 0.001) greater than inulin: 0.12 +/- .05 (P less than 0.001)--not different from dextran (mol wt 60,000-90,000): 0.08 +/- .02 (P greater then .01). Calculation of the resistance of the alveolar epithelium compared to total barrier resistance for the various solutes indicates that approximately 90% of the total resistance resides in the alveolar epithelium. Comparison of the ratio of permeability coefficients to the ratio of free-diffusion coefficients in water shows similar values for the three large polar solutes, suggesting that permeation through the alveolar epithelium occurs by means of water-filled channels. The values for permeability coefficients of alveolar epithelium fit into the spectrum of values reported for other epithelial structures (including gall bladder, frog skin, and toad bladder); it seems to have a system of channels with a small number of wide "pores" (greater than 80 A) that permit permeation of large polar solutes and is not a relatively homogeneous structure.
    [Abstract] [Full Text] [Related] [New Search]