These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effect of Na+ /H+ exchange inhibitor, SM-20550, on impaired mitochondrial respiratory function and mitochondrial Ca2+ overload in ischemic/reperfused rat hearts.
    Author: Yamamoto S, Matsui K, Ohashi N.
    Journal: J Cardiovasc Pharmacol; 2002 Apr; 39(4):569-75. PubMed ID: 11904531.
    Abstract:
    The aim of this study was to investigate whether a selective Na+/H+ exchange inhibitor, SM-20550, can modulate the mitochondrial respiratory function and mitochondrial Ca2+ content in isolated rat hearts subjected to 40 min of ischemia and 20 min of reperfusion. SM-20550 (10, 100 nM) was administered for 5 min prior to ischemia and for 20 min during the reperfusion period. At 20 min after reperfusion, treatment with SM-20550 (10, 100 nM) improved the recovery of left ventricular developed pressure and suppressed the rise in left ventricular end-diastolic pressure. Mitochondrial function, assessed by the state 3 oxygen respiration rate, respiratory control index, and oxidative phosphorylation rate, was significantly impaired after ischemia/reperfusion. Administration with SM-20550 (10, 100 nM) attenuated the impaired mitochondrial function, improving the state 3 respiration rate, respiratory control index, and oxidative phosphorylation rate. The mitochondrial Ca2+ content was significantly increased after ischemia/reperfusion but was suppressed by treatment with SM-20550 (10, 100 nM). A significant linear correlation was observed between the respiratory control index and mitochondrial Ca2+ content in the ischemic/reperfused hearts. In conclusion, SM-20550 improved the postischemic recovery of left ventricular function and concurrently protected mitochondrial function mediated by preventing mitochondrial Ca2+ overload.
    [Abstract] [Full Text] [Related] [New Search]