These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A mathematical analysis using fractals for binding interactions of nuclear estrogen receptors occurring on biosensor surfaces.
    Author: Ramakrishnan A, Sadana A.
    Journal: Anal Biochem; 2002 Apr 01; 303(1):78-92. PubMed ID: 11906154.
    Abstract:
    A mathematical approach using fractal concepts is presented for modeling the binding and dissociation interactions between analytes and nuclear estrogen receptors (ER) occurring on surface plasmon resonance biosensor chip surfaces. A kinetic knowledge of the binding interactions mediated by ER would help in better understanding the carcinogenicity of these steroidogenic compounds and assist in modulating these reactions. The fractal approach is applied to analyte-ER interaction data obtained from literature. Numerical values obtained for the binding and dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor surface. For example, a single-fractal analysis is used to describe the binding and dissociation phases for the binding of estradiol and ERalpha in solution to clone 31 protein immobilized on a biosensor chip (C-S. Suen et al., 1998, J. Biol. Chem. 273(42), 27645-27653). The binding and the dissociation rate coefficients are 27.57 and 8.813, respectively, and the corresponding fractal dimensions are 1.986 and 2.268, respectively. In some examples dual-fractal models were employed to obtain a better fit of either the association or the dissociation phases or for both. Predictive relationships are developed for (a) the binding and the dissociation rate coefficients as a function of their respective fractal dimensions and (b) the ratio K(A) (= k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). The analysis should provide further physical insights into the ER-mediated interactions occurring on biosensor and other surfaces.
    [Abstract] [Full Text] [Related] [New Search]