These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ. Author: Kulik A, Brockhaus J, Pedarzani P, Ballanyi K. Journal: Neuroscience; 2002; 110(3):541-54. PubMed ID: 11906792. Abstract: The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current. Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.[Abstract] [Full Text] [Related] [New Search]