These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proliferating or differentiating stimuli act on different lipid-dependent signaling pathways in nuclei of human leukemia cells.
    Author: Neri LM, Bortul R, Borgatti P, Tabellini G, Baldini G, Capitani S, Martelli AM.
    Journal: Mol Biol Cell; 2002 Mar; 13(3):947-64. PubMed ID: 11907274.
    Abstract:
    Previous results have shown that the human promyelocytic leukemia HL-60 cell line responds to either proliferating or differentiating stimuli. When these cells are induced to proliferate, protein kinase C (PKC)-beta II migrates toward the nucleus, whereas when they are exposed to differentiating agents, there is a nuclear translocation of the alpha isoform of PKC. As a step toward the elucidation of the early intranuclear events that regulate the proliferation or the differentiation process, we show that in the HL-60 cells, a proliferating stimulus (i.e., insulin-like growth factor-I [IGF-I]) increased nuclear diacylglycerol (DAG) production derived from phosphatidylinositol (4,5) bisphosphate, as indicated by the inhibition exerted by 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine and U-73122 (1-[6((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), which are pharmacological inhibitors of phosphoinositide-specific phospholipase C. In contrast, when HL-60 cells were induced to differentiate along the granulocytic lineage by dimethyl sulfoxide, we observed a rise in the nuclear DAG mass, which was sensitive to either neomycin or propranolol, two compounds with inhibitory effect on phospholipase D (PLD)-mediated DAG generation. In nuclei of dimethyl sulfoxide-treated HL-60 cells, we observed a rise in the amount of a 90-kDa PLD, distinct from PLD1 or PLD2. When a phosphatidylinositol (4,5) bisphosphate-derived DAG pool was generated in the nucleus, a selective translocation of PKC-beta II occurred. On the other hand, nuclear DAG derived through PLD, recruited PKC-alpha to the nucleus. Both of these PKC isoforms were phosphorylated on serine residues. These results provide support for the proposal that in the HL-60 cell nucleus there are two independently regulated sources of DAG, both of which are capable of acting as the driving force that attracts to this organelle distinct, DAG-dependent PKC isozymes. Our results assume a particular significance in light of the proposed use of pharmacological inhibitors of PKC-dependent biochemical pathways for the therapy of cancer disease.
    [Abstract] [Full Text] [Related] [New Search]