These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions: application to protein crystallization.
    Author: Foffi G, McCullagh GD, Lawlor A, Zaccarelli E, Dawson KA, Sciortino F, Tartaglia P, Pini D, Stell G.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031407. PubMed ID: 11909057.
    Abstract:
    We have studied a model of a complex fluid consisting of particles interacting through a hard-core and short-range attractive potential of both Yukawa and square-well form. Using a hybrid method, including a self-consistent and quite accurate approximation for the liquid integral equation in the case of the Yukawa fluid, perturbation theory to evaluate the crystal free energies, and mode-coupling theory of the glass transition, we determine both the equilibrium phase diagram of the system and the lines of equilibrium between the supercooled fluid and the glass phases. For these potentials, we study the phase diagrams for different values of the potential range, the ratio of the range of the interaction to the diameter of the repulsive core being the main control parameter. Our arguments are relevant to a variety of systems, from dense colloidal systems with depletion forces, through particle gels, nanoparticle aggregation, and globular protein crystallization.
    [Abstract] [Full Text] [Related] [New Search]