These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst? Author: Willcox TW. Journal: J Extra Corpor Technol; 2002 Mar; 34(1):24-8. PubMed ID: 11911625. Abstract: Assisted venous drainage is a recent development in cardiopulmonary bypass (CPB) and was introduced to overcome limitations in achieving adequate blood flow through small diameter cannulas used in minimally invasive surgery. The more common application, vacuum assisted venous drainage (VAVD) is now widely used in both adult and pediatric CPB. During a clinical investigation into pharmacological cerebral protection at Green Lane Hospital, we repeatedly observed evidence of emboli in the right common carotid artery following both entrainment of air into the venous line, and also, reductions in the blood level of the hard-shell venous reservior. We subsequently embarked upon a series of in vitro experiments designed to identify sources of emboli from the CPB circuit, and to evaluate the ability of CPB circuit components to remove air entrained into the venous line under conditions of both gravity and vacuum assisted venous drainage. Initial experiments revealed design features of certain hard-shell venous reservoirs that generated gaseous emboli. In further studies using adult circuits, entrainment of air into the venous line under conditions of conventional gravity venous drainage resulted in emboli distal to the arterial filter. When these studies were repeated using VAVD, arterial line emboli increased eight to tenfold. Initial experiments with a pediatric circuit showed similar findings. Cerebral emboli during CPB have been positively correlated with increasing neurocognitive deficits. The application of VAVD has been employed clinically without any significant redesign of the components of the CPB circuit. While VAVD may be efficacious in certain scenarios, a thorough understanding of its influence on CPB is essential. Advantages must be balanced against potential hazards. The safe use of VAVD necessitates refinement of perfusion techniques, judicious choice of application, and further development of the CPB circuit.[Abstract] [Full Text] [Related] [New Search]