These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for endogenous agmatine in hypothalamo-neurohypophysial tract and its modulation on vasopressin release and Ca2+ channels.
    Author: Wang G, Gorbatyuk OS, Dayanithi G, Ouyang W, Wang J, Milner TA, Regunathan S, Reis DJ.
    Journal: Brain Res; 2002 Apr 05; 932(1-2):25-36. PubMed ID: 11911858.
    Abstract:
    Agmatine, decarboxylated from arginine by arginine decarboxylase, is particularly prominent in the hypothalamus. The present study utilized the rat hypothalamo-neurohypophysial system to determine expression and "pre-synaptic" modulation of agmatine in the central nervous system (CNS). Under confocal-laser scanning, agmatine-like immunoreactivity (Agm-LI) was found enriched in arginine-vasopressin (AVP)-containing magnocellular neurons of the supraoptic nuclei (SON) and paraventricular nuclei (PVN). In addition, using electron microscopy, Agm-LI was found closely associated with large neurosecretory-like vesicles in neurohypophysial nerve terminals of posterior pituitary gland. Radioimmunoassay revealed that 10 and 30 microM agmatine concentration-dependently inhibited the depolarization-evoked AVP release from isolated neurohypophysial terminals. Using perforated patch-clamp, effects of agmatine on whole-terminal voltage-gated ion currents in the isolated neurohypophysial nerve terminals were examined. While it did not significantly affect either tetrodotoxin (TTX)-sensitive Na(+) or sustained Ca(2+)-activated K(+) channel currents, agmatine (1-40 microM) inhibited Ca(2+) channel currents in approximately 53% of the total nerve terminals investigated. The onset of inhibitory effect was immediate, and the inhibition was reversible and concentration-dependent with an IC(50)=4.6 microM. In the remaining (approximately 47%) neurohypophysial nerve terminals, only a higher (120 microM) concentration of agmatine could moderately inhibit Ca(2+) channel currents. The results suggest that: (1) endogenous agmatine is co-expressed in AVP-containing, hypothalamic magnocellular neurons of the SON/PVN and in neurohypophysial nerve terminals of posterior pituitary gland; (2) agmatine may serve as a physiological neuromodulator by regulating the voltage-gated Ca(2+) channel and, as a result, the release of AVP from neurohypophysial nerve terminals.
    [Abstract] [Full Text] [Related] [New Search]