These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites.
    Author: Csanaky I, Gregus Z.
    Journal: Comp Biochem Physiol C Toxicol Pharmacol; 2002 Mar; 131(3):355-65. PubMed ID: 11912060.
    Abstract:
    In most mammalian species, inorganic arsenicals are extensively biotransformed and excreted both in unchanged form and as metabolites. In the bile of rats receiving arsenate (AsV) or arsenite (AsIII) we have identified monomethylarsonous acid (MMAsIII), purportedly the most toxic metabolite of inorganic arsenic. As rats are not commonly accepted for studying arsenic metabolism, we carried out a comparative investigation on the excretion of AsV, AsIII and their metabolites in five animal species in order to determine whether they also form MMAsIII from AsV and AsIII. Anaesthetised bile duct-cannulated rats, mice, hamsters, rabbits, and guinea pigs were injected with AsV or AsIII (50 micromol/kg, i.v.) and their bile and urine was collected for 2 h. Arsenic in bile and urine was speciated by HPLC-hydride generation-atomic fluorescence spectrometry and the excretion rates of AsV, AsIII, monomethylarsonic acid (MMAsV), MMAsIII and dimethylarsinic acid (DMAsV) were quantified. All species injected with AsV excreted arsenic preferentially into urine, whereas all animals receiving AsIII, except rabbits, delivered more arsenic into bile than urine. Bile contained almost exclusively trivalent arsenic (i.e. AsIII and/or MMAsIII), whereas AsV, AsIII and DMAsV appeared in urine. Except for guinea pigs, which do not methylate arsenic, the other species formed MMAsIII and excreted it into bile. Having excreted as much as 8% of the dose of AsIII or AsV in 2 h as MMAsIII, rats were by far the most efficient producers of this supertoxic metabolite. Thus, although the rat is not a good model for studying long-term arsenic disposition, this species appears especially valuable in studies on AsIII methyltransferase and in vivo formation of MMAsIII.
    [Abstract] [Full Text] [Related] [New Search]