These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cortical excitability and motor task in man: an investigation of the wrist extensor motor area.
    Author: Aimonetti JM, Nielsen JB.
    Journal: Exp Brain Res; 2002 Apr; 143(4):431-9. PubMed ID: 11914788.
    Abstract:
    Task-related changes in the corticospinal excitation of the right extensor carpi radialis (ECR) muscle were investigated in 16 healthy human subjects. The subjects were asked to perform a tonic isometric wrist extension or to clench their hand around a manipulandum, thereby coactivating the antagonistic wrist muscles. At matched levels of background EMG in the ECR muscle, transcranial magnetic stimulation (TMS) was applied through a figure-of-eight coil at 20-30 sites spaced 1 cm apart over the hand area of the left motor cortex. The cortical maps of the representation of the ECR muscle constructed in this way did not change between the two motor tasks. Nevertheless, for all investigated cortical sites TMS evoked a smaller motor evoked potential (MEP) in the ECR muscles during hand clenching than during wrist extension. A similar decrease in the short-latency peak in the poststimulus time histogram (PSTH) of single ECR motor units to TMS during hand clenching was found in seven subjects (number of motor units = 35). In contrast, short-latency peaks in the PSTH evoked by electrical stimulation of the motor cortex had a similar size during the two tasks (number of motor units = 9; two subjects). Already the initial 0.5-1.0 ms of the short-latency peak evoked by TMS was depressed during hand clenching, which suggests that decreased excitability of corticospinal cells with monosynaptic projections onto ECR motor units was involved. This decreased excitability was not explained by increased intracortical inhibition, which was found to be of a similar size during hand clenching and wrist extension. The task-related changes in the efficiency of the motor cortex output are discussed in relation to the function of the wrist antagonist muscles in handling and gripping tasks.
    [Abstract] [Full Text] [Related] [New Search]