These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of hepatic fatty acid synthetase in the obese-hyperglycemic mutant mouse.
    Author: Volpe JJ, Marasa JC.
    Journal: Biochim Biophys Acta; 1975 Nov 21; 409(2):235-48. PubMed ID: 1191666.
    Abstract:
    Regulation of fatty acid synthetase has been studied in the obese-hyperglycemic mouse and compared with regulation in non obese, littermate control animals. The mechanisms underlying the regulatory changes were defined by immunochemical techniques. Several major conclusions are justified from the data obtained: (1) Although the hepatic specific activity of fatty acid synthetase is higher in obese than in non obese animals pair-fed chow, no difference in hepatic activities is apparent in animals pair-fed the fat-free diet; (2) The higher enzymatic activity in obese animals fed chow is related to a higher content of enzyme, and this higher content is associated with a higher rate of enzyme synthesis; (3) The decrease in hepatic synthetase activity with starvation is distinctly more striking in non obese than in obese animals, and the changes in activity reflect changes in content of enzyme; (4) With starvation there is a decrease in synthesis of enzyme in obese and non obese animals, but only in non obese animals is there also a marked increase in the rate of synthetase degradation (t1/2 = 24 h during starvation, t1/2 = 76 h during normalfeeding); (5) Refeeding starved mice a fat-free diet results in a more striking increase in hepatic synthetase activity in non obese than in obese animals; (6) Administration of triiodothyronine causes a more marked increase in hepatic synthetase activity in non obese than in obese animals. The data thus define a variety of differences in regulation of hepatic fatty acid synthetase in mutant and normal animals. The roles of enzyme synthesis and degradation in the etiology of these differences are defined, and possible mechanisms underlying regulation of synthetase synthesis and degradation in normal mammalian liver are suggested by the observations.
    [Abstract] [Full Text] [Related] [New Search]