These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induced expression of a temperature-sensitive leucine-rich repeat receptor-like protein kinase gene by hypersensitive cell death and wounding in tobacco plant carrying the N resistance gene. Author: Ito N, Takabatake R, Seo S, Hiraga S, Mitsuhara I, Ohashi Y. Journal: Plant Cell Physiol; 2002 Mar; 43(3):266-74. PubMed ID: 11917080. Abstract: A gene encoding a receptor-like protein kinase was isolated as the gene induced in the early period of N gene-dependent hypersensitive cell death in tobacco leaves. The kinase domain expressed as a glutathione S-transferase fusion protein was capable of autophosphorylation, indicating that this gene encodes an active protein kinase. A high level of the transcript accumulated before necrotic lesion formation in tobacco mosaic virus (TMV)-inoculated tobacco leaves carrying the N gene but it was low in a tobacco cultivar lacking the N gene. A small but reproducible increase in the transcript was found 1-2 h after a temperature shift from 30 degrees C to 20 degrees C even in healthy leaves, suggesting the gene expression is temperature sensitive. The gene was named WRK for wound-induced receptor-like protein kinase, because the transcript increased to a maximum within 15-30 min of wounding. In suspension cultured tobacco cells, an increase in the transcript was found 15 min after transfer to a new medium, but it was suppressed under high osmotic pressures. The wound-induced WRK accumulation was enhanced by cycloheximide treatment, but not by known defense signal compounds (salicylic acid, jasmonic acid, 1-aminocyclopropan-1-carboxylic acid and abscisic acid) and some plant hormones. Thus, WRK is a wound-inducible and temperature-sensitive protein kinase gene induced before hypersensitive cell death probably through unknown signaling pathways.[Abstract] [Full Text] [Related] [New Search]