These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of agmatine on L-type calcium current in rat ventricular myocytes. Author: Li Q, Yin JX, He RR. Journal: Acta Pharmacol Sin; 2002 Mar; 23(3):219-24. PubMed ID: 11918845. Abstract: AIM: To study the effect of agmatine (Agm) on L-type calcium current (I(Ca-L)) in rat ventricular myocytes. METHODS: Whole-cell configuration of the patch-clamp technique was used to record I(Ca-L) in single rat ventricular myocytes which were dissociated by enzymatic dissociation method. RESULTS: (1) Agm (0.5, 1, 2 mmol/L) reduced the voltage-dependently activated peak amplitude of I(Ca-L) (pA) from 1451+/-236 (control) to 937+/-105 (n=8, P <0.05), 585+/-74 (n=8, P <0.01), and to 301+/-156 (n=8, P <0.01) in a concentration-dependent manner. (2) Agm (1 mmol/L) blocked I(Ca-L) in a use-dependent manner. The degree of use-dependent blocking effect was 53 %+/-12 % (n=8, P <0.05) at 1 Hz, and 69 %+/-11 % (n=8, P <0.01) at 3 Hz. (3) Agm upshifted the current-voltage (I-V) curve, but the characteristics of I-V relationship were not significantly altered by Agm, the maximal activation voltage of I(Ca-L) was not different from that of control. Steady-state activation of I(Ca-L) was not affected markedly. The half activation potential (V(0.5)) and the slope factor (k) were not significantly different from those of the control. V(0.5) value was (-20.2+/-2.5) mV in the control and (-20.5+/-2.7) mV in the presence of Agm 1 mmol/L. The k value was (7.1+/-0.4) mV and (7.5+/-0.5) mV, respectively (n=8, P >0.05). (4) Agm 1 mmol/L markedly shifted the steady-state inactivation curve of I(Ca-L) to the left, and accelerated the voltage-dependent steady-state inactivation of calcium current. V(0.5) value was (-32+/-6) mV in the control and (-40+/-5) mV in the presence of Agm. The k value was (7.6+/-0.9) mV and (12.5+/-1.1) mV, respectively (n=8, P <0.05). (5) Agm 1 mmol/L markedly delayed half-recovery time of Ca2+ channel from inactivation (92+/-28) ms to (249+/-26) ms (n=8, P <0.01). CONCLUSION: Agm inhibited I(Ca-L) and mainly acted on the inactivated state of L-type calcium channel, manifested as acceleration of calcium channel inactivation and slowdown of recovery from inactivated state in rat ventricular myocytes.[Abstract] [Full Text] [Related] [New Search]