These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of monoamines, adenosine and GABA in tissues of the land snail Helix lucorum and lizard Agama stellio stellio during hibernation.
    Author: Michaelidis B, Loumbourdis NS, Kapaki E.
    Journal: J Exp Biol; 2002 Apr; 205(Pt 8):1135-43. PubMed ID: 11919272.
    Abstract:
    The aim of the present study was to determine the levels of monoamines, GABA and adenosine in the brain, heart and haemolymph of the land snail Helix lucorum and in the brain, heart and blood of lizard Agama stellio stellio during long-term hibernation. We measured levels of the monoamines serotonin (5-HT) and its main metabolite 5-hydroxyindole-3-acetic acid (5-HIAA), dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA), norepinephrine (NE) and epinephrine (E). The most abundant amines detected in the brain and heart of active H. lucorum were 5-HT and DA. Of the metabolites examined only 5-HIAA was found in the brain. NE was found at very low levels but only in the brain, while E was not detected in the brain and heart. The levels of 5-HT and 5-HIAA increased in the brain and heart of H. lucorum within the first months of hibernation, showing a significant decrease thereafter. The levels of DA did not change during hibernation. The results indicated that 5-HT might be involved in preparing snails for entry into hibernation. GABA was only found in the brain of H. lucorum, and the levels were low; these levels remained during hibernation. Adenosine was present in brain and heart of H. lucorum, and during hibernation, the level of adenosine decreased significantly in the brain but remained steady in the heart. The monoamines 5-HT, DA and NE were present in the brain of active lizards A. stellio stellio, whereas E was found only at very low levels. Moreover, the metabolites 5-HIAA, DOPAC and HVA were detected in the brain of active lizards. The monoamines 5-HT, DA, NE and E were also detected in the heart and blood of active lizards. During hibernation the levels of these four monoamines were decreased significantly in the brain and heart of A. stellio stellio. In contrast, the levels of E increased in the heart and blood of hibernating lizards. Adenosine was detected in both heart and brain of active lizards, but hibernation caused a marked decrease in its levels at both tissues. GABA was found at higher levels than monoamines and adenosine in the brain of active lizards, and hibernation caused a significant increase in its levels, indicating an important role of GABA in inhibition of neuronal activity in hibernating lizards.
    [Abstract] [Full Text] [Related] [New Search]