These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast.
    Author: Akada R, Hirosawa I, Kawahata M, Hoshida H, Nishizawa Y.
    Journal: Yeast; 2002 Mar 30; 19(5):393-402. PubMed ID: 11921088.
    Abstract:
    Counter-selection is a useful gene manipulation technique for repeated gene disruptions, gene shufflings and gene replacements in yeasts. We developed a novel counter-selection system using a galactose-inducible growth inhibitory sequence (Kawahata et al.1999. Yeast 15: 1-10). This counter-selection marker, named GAL10p-GIN11, has several advantages over previous counter-selection markers, i.e. use of an inexpensive galactose medium for counter-selection, combined use with any transformation markers for gene introduction, and no requirement of specific mutations in the host strains. The GIN11 sequence, which is a part of an X-element of the subtelomeric regions, contained a conserved autonomously replicating sequence, causing the possibility of inefficient chromosomal integration. We isolated GIN11 mutants that lost the replication activity but retained the growth-inhibitory effect when overexpressed. A mutant GIN11M86 sequence was selected and fused to the CUP1 promoter for the counter-selection on a copper-containing medium. The GALp-GIN11M86 and the CUPp-GIN11M86 were used for constructing sets of integrating plasmids containing auxotrophic markers involving HIS3, TRP1, LEU2, URA3 or ADE2, or a drug-resistant marker PGKp-YAP1. In addition, a set of gene disruption cassettes that contained each of the auxotrophic markers and the GALp-GIN11M86, which were flanked by direct repeats of a hisG sequence, were constructed. The counter-selectable integrating plasmids and the gene disruption cassettes can allow the markers to be used repeatedly for yeast gene manipulations.
    [Abstract] [Full Text] [Related] [New Search]