These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Growth factor-dependent proliferation and invasion of muscle satellite cells require the cell-associated fibrinolytic system.
    Author: Fibbi G, D'Alessio S, Pucci M, Cerletti M, Del Rosso M.
    Journal: Biol Chem; 2002 Jan; 383(1):127-36. PubMed ID: 11928807.
    Abstract:
    The process of muscle regeneration in normal and dystrophic muscle depends on locally produced cytokines and growth factors and requires the activity of the urokinase plasminogen activator/urokinase plasminogen activator receptor/plasminogen activator inhibitor-1 system. In this study we tested the effect of basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) and transforming growth factor-beta (TGFbeta) on the fibrinolytic pattern of normal and dystrophic satellite cells, their mitogenic and motogenic activities and the dependence of such activities on the cell-associated fibrinolytic system. We have observed that the urokinase plasminogen activator (u-PA) receptor is weakly upregulated by bFGF in normal satellite cells, while it is strongly up-regulated by TGFbeta, mainly in dystrophic myoblasts. bFGF up-regulated u-PA in both normal and dystrophic myoblasts grown in primary culture, while a striking down-regulation was observed with TGFbeta. TGFbeta was the only growth factor able to exceptionally up-regulate plasminogen activator inhibitor-1 (PAI-1), mainly in dystrophic satellite cells. HGF did not show any activity on the fibrinolytic system. Proliferation and invasion into Matrigel matrices of normal and dystrophic cells occurred regardless of the growth factor-dependent regulation of the fibrinolytic system. Nevertheless, each growth factor required the efficiency of the constitutive cell-associated fibrinolytic system to operate, as shown by impairment of growth factor activity with antagonists of u-PA and of its receptor. Noteworthy, TGFbeta induced a dose-dependent increase of Matrigel invasion only in dystrophic myoblasts. Since TGFbeta-challenged dystrophic myoblasts undergo an exceptional up-regulation of the receptor and of PAI-1, we propose the possibility that the TGFbeta-induced fibrinolytic pattern (low urokinase plasminogen activator, high receptor and high PAI-1) may be exploited to promote survival and spreading of transplanted engineered myoblasts in Duchenne muscular dystrophy.
    [Abstract] [Full Text] [Related] [New Search]