These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acetylide-bridged organometallic oligomers via the photochemical metathesis of methyl-iron(II) complexes. Author: Field LD, Turnbull AJ, Turner P. Journal: J Am Chem Soc; 2002 Apr 10; 124(14):3692-702. PubMed ID: 11929259. Abstract: The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.[Abstract] [Full Text] [Related] [New Search]