These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose-H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-13C]histidine and (15)NH(3). Author: Venter H, Ashcroft AE, Keen JN, Henderson PJ, Herbert RB. Journal: Biochem J; 2002 Apr 15; 363(Pt 2):243-52. PubMed ID: 11931651. Abstract: The molecular mass of the galactose-H(+) symport protein GalP, as its histidine-tagged derivative GalP(His)(6), has been determined by electrospray MS (ESI-MS) with an error of <0.02%. One methionine residue, predicted to be present from the DNA sequence, was deduced to be absent. This is a significant advance on the estimation of the molecular masses of membrane-transport proteins by SDS/PAGE, where there is a consistent under-estimation of the true molecular mass due to anomalous electrophoretic migration. Addition of a size-exclusion chromatography step after Ni(2+)-nitrilotriacetate affinity purification was essential to obtain GalP(His)(6) suitable for ESI-MS. Controlled trypsin, trypsin+chymotrypsin and CNBr digestion of the protein yielded peptide fragments suitable for ESI-MS and tandem MS analysis, and accurate mass determination of the derived fragments resulted in identification of 82% of the GalP(His)(6) protein. Tandem MS analysis of selected peptides then afforded 49% of the actual amino acid sequence of the protein; the absence of the N-terminal methionine was confirmed. Matrix-assisted laser-desorption ionization MS allowed identification of one peptide that was not detected by ESI-MS. All the protein/peptide mass and sequence determinations were in accord with the predictions of amino acid sequence deduced from the DNA sequence of the galP gene. [ring-2-(13)C]Histidine was incorporated into GalP(His)(6) in vivo, and ESI-MS analysis enabled the measurement of a high (80%) and specific incorporation of label into the histidine residues in the protein. MS could also be used to confirm the labelling of the protein by (15)NH(3) (93% enrichment) and [(19)F]tryptophan (83% enrichment). Such MS measurements will serve in the future analysis of the structures of membrane-transport proteins by NMR, and of their topology by indirect techniques.[Abstract] [Full Text] [Related] [New Search]