These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Origins of gene, genetic code, protein and life: comprehensive view of life systems from a GNC-SNS primitive genetic code hypothesis.
    Author: Ikehara K.
    Journal: J Biosci; 2002 Mar; 27(2):165-86. PubMed ID: 11937687.
    Abstract:
    We have investigated the origin of genes, the genetic code, proteins and life using six indices (hydropathy, alpha-helix, beta-sheet and beta-turn formabilities, acidic amino acid content and basic amino acid content) necessary for appropriate three-dimensional structure formation of globular proteins. From the analysis of microbial genes, we have concluded that newly-born genes are products of nonstop frames (NSF) on antisense strands of microbial GC-rich genes [GC-NSF(a)] and from SNS repeating sequences [(SNS)n] similar to the GC-NSF(a) (S and N mean G or C and either of four bases, respectively). We have also proposed that the universal genetic code used by most organisms on the earth presently could be derived from a GNC-SNS primitive genetic code. We have further presented the [GADV]-protein world hypothesis of the origin of life as well as a hypothesis of protein production, suggesting that proteins were originally produced by random peptide formation of amino acids restricted in specific amino acid compositions termed as GNC-, SNS- and GC-NSF(a)-0th order structures of proteins. The [GADV]-protein world hypothesis is primarily derived from the GNC-primitive genetic code hypothesis. It is also expected that basic properties of extant genes and proteins could be revealed by considerations based on the scenario with four stages.
    [Abstract] [Full Text] [Related] [New Search]