These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. Author: Hsu HY, Wen MH. Journal: J Biol Chem; 2002 Jun 21; 277(25):22131-9. PubMed ID: 11940570. Abstract: Lipopolysaccharide (LPS) stimulates macrophages to release inflammatory cytokines, interleukin-1 beta (IL-1), and tumor necrosis factor (TNF). LPS-induced TNF suppresses scavenger receptor functions in macrophages (van Lenten, B. J., and Fogelman, A. M. (1992) J. Immunol. 148, 112-116), which is regulated by TNF-mediated protein kinases (Hsu, H. Y., and Twu, Y. C. (2000) J. Biol. Chem. 275, 41035-41048). To examine the molecular mechanism for LPS induction of IL-1 in macrophages, we demonstrated that LPS quickly stimulated reactive oxygen species (ROS), and 3 h later induced prointerleukin-1 beta (pro-IL-1, precursor of IL-1) production and IL-1 secretion. LPS stimulated pro-IL-1 message/protein between 3 and 10 h; however, there was a 40% reduction of pro-IL-1 in preincubation of the antioxidant, N-acetylcysteine (NAC). Moreover, NAC moderated LPS-induced IL-1 secretion partially via interleukin 1-converting enzyme. The maximal activity of LPS-induced ERK, JNK, and p38 was 12- (30 min), 5- (30 min), and 16-fold (15 min), respectively. In contrast, NAC reduced ERK activity to 60% and decreased p38 activity to the basal level, but JNK activity was induced 2-fold. Furthermore, the pharmacological antagonists LY294002, SB203580, curcumin, calphostin C, and PD98059 revealed the diverse roles of LPS-mediated protein kinases in pro-IL-1. On the other hand, NAC and diphenyleneiodonium chloride partially inhibited LPS-induced Rac activity and protein-tyrosine kinase (PTK), indicating that LPS-mediated ROS and NADPH oxidase correspond to Rac activation and IL-1 expression. Our findings establish for the first time that LPS-mediated PTK/phosphatidylinositol 3-kinase/Rac/p38 pathways play a more important role than pathways of PTK/PKC/MEK/ERK and of PTK/phosphatidylinositol 3-kinase/Rac/JNK in the regulation of pro-IL-1/IL-1. The findings also further elucidate the critical role of LPS-mediated ROS in signal transduction pathways. Our results suggest that understanding LPS-transduced signals in IL-1 induction upon the antibacterial action of macrophages should provide a therapeutic strategy for aberrant inflammatory responses leading to severe cellular injury or concurrent multiorgan septic damage.[Abstract] [Full Text] [Related] [New Search]