These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stabilities of lead(II) complexes formed in aqueous solution with methyl thiophosphate (MeOPS(2-)), uridine 5'- O-thiomonophosphate (UMPS(2-)) or adenosine 5'- O-thiomonophosphate (AMPS(2-)).
    Author: Da Costa CP, Krajewska D, Okruszek A, Stec WJ, Sigel H.
    Journal: J Biol Inorg Chem; 2002 Apr; 7(4-5):405-15. PubMed ID: 11941498.
    Abstract:
    The acidity constants of twofold protonated methyl thiophosphate (MeOPS(2-)) and of monoprotonated uridine 5'- O-thiomonophosphate (UMPS(2-)) have been determined in aqueous solution (25 degrees C; I= 0.1 M, NaNO(3)) by potentiometric pH titration. The stability constants of their 1:1 complexes formed with Pb(2+), i.e. Pb(MeOPS) and Pb(UMPS), have also been measured. The results show that replacement of a phosphate oxygen by a sulfur atom increases the acidity by about 1.4 p K units. On the basis of recently established log versus plots ( = simple phosphate or phosphonate ligands where R is a non-coordinating residue), it is shown that the stability of the Pb(thiophosphate) complexes is by log Delta= 2.43+/-0.09 larger than expected for a Pb(2+)-phosphate interaction. The identity of the stability increase (log Delta) observed for Pb(MeOPS) and Pb(UMPS) shows that the nucleobase residue in the Pb(UMPS) complex has no influence on complex formation. To be able to carry out the mentioned comparisons, we have also determined the stability constant of the complex formed between Pb(2+) and methyl phosphate; the corresponding data for Pb(UMP) were already known from our earlier studies. The present results allow an evaluation of other Pb(2+) complexes formed with thiophosphate derivatives and they are applied now to the Pb(2+) complexes of adenosine 5'- O-thiomonophosphate (AMPS(2-)). The stability constants of the Pb(H;AMPS)(+) and Pb(AMPS) complexes were measured and it is shown that, within the error limits, the stability of the Pb(AMPS) complex is determined by the basicity of the thiophosphate group of AMPS(2-); in other words, no hint for macrochelate formation involving N7 was observed. More important, with the aid of micro-stability-constant considerations it is concluded that the structure of the dominating isomer of the Pb(H;AMPS)(+) species is the one where the proton is located at the N1 site of the adenine residue and Pb(2+) is coordinated to the deprotonated thiophosphate group. The insights gained from this study with regard to thiophosphate-altered single-stranded nucleic acids and their affinity towards Pb(2+) are discussed.
    [Abstract] [Full Text] [Related] [New Search]