These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: X-ray powder diffractometric method for quantitation of crystalline drug in microparticulate systems. I. Microspheres.
    Author: Dash AK, Khin-Khin A, Suryanarayanan R.
    Journal: J Pharm Sci; 2002 Apr; 91(4):983-90. PubMed ID: 11948537.
    Abstract:
    Ethylcellulose microspheres containing tolnaftate (I) were prepared by the emulsion-solvent evaporation technique. An X-ray powder diffractometric method was developed to quantify the content of crystalline I in these microspheres. X-ray lines of I with d-spacings of 5.5 and 4.2 A were chosen for the quantitative analyses. Physical mixtures containing various weight fractions of I and blank (empty) microspheres were prepared and lithium fluoride (20% w/w) was added as the internal standard. The 5.5 and 4.3 A lines of I and the 2.3 A line of lithium fluoride were used for the quantitative analysis. A plot of the intensity ratio (intensity of the 5.5 A line of I/intensity of 2.3 A line of lithium fluoride) as a function of the weight percent of I in the mixture, resulted in a straight line. The crystalline content of I in the tolnaftate-loaded microspheres was determined using this standard curve. A second independent determination of the content of I was possible from the intensities of the 4.3 A line. The enthalpy of fusion of I, determined by differential scanning calorimetry (DSC), was also used as a measure of the crystalline content of I in the microspheres. The X-ray and DSC methods measure the content of crystalline I in the microspheres at room temperature ( approximately 25 degrees C) and at the melting point of I (111 degrees C), respectively. The total content of I in the microspheres was determined by HPLC. The DSC and X-ray results indicated that a substantial fraction of the incorporated I was dissolved in the ethylcellulose matrix.
    [Abstract] [Full Text] [Related] [New Search]