These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A 13C solid-state NMR investigation of the alkynyl carbon chemical shift tensors for 2-butyne-1,4-diol. Author: Bernard GM, Wasylishen RE. Journal: Solid State Nucl Magn Reson; 2002; 21(1-2):86-104. PubMed ID: 11949820. Abstract: The alkynyl carbon chemical shift (CS) tensors for 2-butyne-1,4-diol are reported, based on analyses of the carbon-13 NMR spectra of stationary-powder and slow magic-angle spinning (MAS) samples for which the alkynyl carbon nuclei are enriched in 13C. NMR spectra of slow MAS samples exhibit spinning-frequency-dependent fine structure typical of crystallographically equivalent but magnetically distinct nuclei. Simulated spectra of slow MAS samples of this two-spin system are particularly sensitive to the relative orientations of the CS tensors. In addition, the value of 1J(13C, 13C), +175 +/- 10 Hz, is determined by examination of the total NMR lineshape of slow MAS samples. The CS tensors are almost axially symmetric, delta11 = 158.9 +/- 1.0 ppm and delta22 = 155.7 +/- 1.0 ppm; the direction of greatest shielding is approximately along the alkynyl C-C bond, delta33 = -57.8 +/- 2.0 ppm. Both the magnitudes of the principal components of the CS tensors and their orientations are in agreement with those predicted from first-principles calculations at the HF and MP2 levels of theory. This study demonstrates the importance of examining the NMR spectra of homonuclear two-spin systems with and without MAS under a variety of conditions (e.g., two or more applied magnetic fields and slow MAS).[Abstract] [Full Text] [Related] [New Search]